



#### Objective Mapping of SWellEx-96 CTD Data

Katherine H. Kim, Bruce D. Cornuelle, and William S. Hodgkiss

Marine Physical Laboratory Scripps Institution of Oceanography La Jolla, California 92093-0704

Uncertainty DRI
FY03 Progress Review Meeting
Providence, Rhode Island
18–19 June 2003



# Objective & Outline



To estimate sound speed fields from a sparse dataset with the goal of utilizing the results in modeling acoustic variability

- The SWellEx-96 Experiment
- Objective Mapping
- Sound Speed Estimates
- Transmission Loss



## The SWellEx-96 Experiment











#### **Acoustic Sources**



SWellEx-96, Event S5: VLA, Element-Averaged Start Time: JD 131, 23:15:00 GMT



- Deep source (54 m)
  - 5 sets of 13 CW tones
  - 49 Hz 400 Hz
  - FM chirps
- Shallow source (9 m)
  - 9 CW tones
  - 109 Hz 385 Hz
- Devoid of loud interferers



#### **CTD** Measurements



SWellEx-96 CTD Casts: 10 - 18 May 1996 Spatial Distribution of 51 Casts









# Objective Mapping



- sparse dataset ⇒ regularly gridded fields
- estimate  $\tilde{X}$  which deviates as little as possible in the mean square from the true solution X:

$$P = \left\langle (\tilde{x} - x)(\tilde{x} - x)^T \right\rangle$$

The minimum variance estimate is:

$$\tilde{x} = R_{xy}R_{yy}^{-1}y$$
 where  $y = Ex + n$ 

The error covariance is:

$$P = R_{xx} - R_{xy}R_{yy}^{-1}R_{xy}^{T}$$



# Objective Mapping Results













#### **SSP** Estimates







#### Source-to-Receiver Path







## **Transmission Loss**







## Summary



- Experimental case study
  - Compiled experimental ocean acoustic data set (SWellEx-96) for team members
- Objective mapping
  - Generated water column sound speed estimates
  - Estimates and errors consistent with expectations
  - To be used in conjunction with the ROMS model
- Preliminary acoustic field calculation
  - Small variability in sound speed can affect ocean acoustic propagation
  - At low frequencies, the local effects are small but the cumulative effect on acoustic propagation could be significant over long ranges